(Robert Chehab’s graphic and summary)
In the following we took:
For both case (10 GeV and 5 GeV) the inital x and y electron distribution follow (ROOT syntax)
x=gRandom->Gaus(0,2.5e-3)/sqrt(2.); // gaussian centered x=0 with rms_x=2.5mm
y=gRandom->Gaus(0,2.5e-3)/sqrt(2.); // gaussian centered y=0 whith rms_y=2.5mm
Electron beam energy : 10 GeV
- Crystal thickness : 0.1 cm
- Distance between amorphous and amorphous : 2m
- Amorphous thickness : 0.8 cm
(initial particles impinging on the crystal = 5000 macro e-)
Photons energy spectrum
Positrons phase space after the amorphous target
Energy (no energy cut)
Energy (below 400 MeV):
X:
Y:
Px:
Py:
Positrons spatial distribution after capture section (AMD)
AMD caracteristics
Transverse phase space of the positrons from the target.
We apply a cut in the radius, r<20mm corresponding to the aperture of the
pre-accelerating cavities.
In blue after the amorphous and in red after the AMD
Angle distribution
Electron beam energy : 5GeV
- Crystal thickness : 0.14 cm
- Distance between amorphous and amorphous : 2m
- Amorphous thickness : 1 cm
(initial particles impinging on the crystal = 6000 macro e-)
Photons energy spectrum
Positrons phase space after the amorphous target
Energy (no energy cut):
Energy (below 200 MeV):
X:
Y:
Px:
Py:
Positrons spatial distribution after capture section (AMD)
AMD caracteristics
Transverse phase space of the positrons from the target.
We apply a cut in the radius, r<20mm corresponding to the aperture of the
pre-accelerating cavities.
In blue after the amorphous and in red after the AMD
Angle distribution
EXTRA …
(thanks to Laurent Garnier Qt implementation see http://users.lal.in2p3.fr/garnier/G4QtTutorial.html#interface)